Entropy Generation In an Unsteady MHD Channel Flow With Navier Slip and Asymmetric Convective Cooling
Authors
Abstract:
The combined effects of magnetic field, Navier slip and convective heating on the entropy generation in a flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates under a constant pressure gradient have been examined. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient fluid. The governing non-linear governing partial differential equations are solved using the MATLAB PDE solver. The entropy generation number and the Bejan number are also obtained. The influences of the pertinent flow parameters on velocity, temperature, entropy generation and Bejan number are discussed graphically. It is observed that the plate surfaces act as a strong source of entropy generation and heat transfer irreversibility. Also, the entropy generation number decreases for increasing values of the magnetic parameter. The slip parameters are found to control the entropy generation. By using asymmetric cooling of the plates, it is possible to operate the system with reduced entropy generation rate.
similar resources
Analysis of Entropy Generation Rate in an Unsteady Porous Channel Flow with Navier Slip and Convective Cooling
This study deals with the combined effects of Navier Slip, Convective cooling, variable viscosity, and suction/injection on the entropy generation rate in an unsteady flow of an incompressible viscous fluid flowing through a channel with permeable walls. The model equations for momentum and energy balance are solved numerically using semi-discretization finite difference techniques. Both the ve...
full textEntropy generation due to unsteady hydromagnetic Couette flow and heat transfer with asymmetric convective cooling in a rotating system
Entropy generation in an unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates in a rotating system have been analyzed. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient following the Newton's law of cooling. A numerical solution for governin...
full textentropy generation due to unsteady hydromagnetic couette flow and heat transfer with asymmetric convective cooling in a rotating system
entropy generation in an unsteady hydromagnetic couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates in a rotating system have been analyzed. both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient following the newton's law of cooling. a numerical solution for governin...
full textEffects of Slip and Heat Transfer on MHD Peristaltic Flow in An Inclined Asymmetric Channel
Peristaltic transport of an incompressible electrically conducting viscous fluid in an inclined planar asymmetric channel is studied. The asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitude and phase. The closed form solutions of momentum and energy equation in presence of viscous dissipation term are obtained for long wave length and low Reynol...
full textEntropy generation analysis of MHD forced convective flow through a horizontal porous channel
Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...
full textMHD Peristaltic flow of a Jeffrey fluid in an asymmetric channel with partial slip
In the present note, we have discussed the effects of partial slip on the peristaltic flow of a Jeffrey fluid in an asymmetric channel. The governing equations of motion are simplified using a long wave length approximation. A closed form solution of the momentum equation is obtained by Adomian decomposition method and an exact solution is presented. The expression for pressure rise is calculat...
full textMy Resources
Journal title
volume 9 issue 2
pages 149- 160
publication date 2017-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023